
Detecting hyperplane clusters with adaptive possibilistic
clustering

K.D. Koutroumbas
Inst. for Astronomy,
Astrophysics, Space

Applications and Remote
Sensing, National Observatory

of Athens, Greece
koutroum@noa.gr

S.D. Xenaki
Inst. for Astronomy,
Astrophysics, Space

Applications and Remote
Sensing, National Observatory
of Athens, Greece and Dept.

of Informatics and
Telecommunications, National
& Kapodistrian University of

Athens, Greece
ixenaki@noa.gr

A.A. Rontogiannis
Inst. for Astronomy,
Astrophysics, Space

Applications and Remote
Sensing, National Observatory

of Athens, Greece
tronto@noa.gr

ABSTRACT
In this paper the problem of detecting clusters whose points
are spread along an (l − 1)-dimensional hyperplane in an
l-dimensional space is considered. More specifically, the re-
cently proposed adaptive possibilistic c-means algorithm is
modified in order to cope with this type of clusters. The
main advantage of the proposed method is that it does not
require a priori knowledge of the exact number of clusters.
Instead, it begins with an overestimated number of them and
(potentially) ends up with the true number of them. Pre-
liminary results of the proposed algorithm on both synthetic
and real data verify its validity.

CCS Concepts
•Information systems→Clustering; •Theory of com-
putation → Unsupervised learning and clustering;
•Computing methodologies → Cluster analysis;

Keywords
possibilistic clustering, adaptivity, hyperplane clusters

1. INTRODUCTION
Clustering of a set of entities is its partition to a number

of groups (clusters) each one containing “similar” objects,
while “less similar” entities are placed in different clusters.
In practice, each entity is represented by a set of l measure-
ments. Thus, each entity can be viewed as a point in the

This research has been partially financed by the PH-
ySIS project (http://www.physis-project.eu/), contract no.
640174, within the H2020 Framework Program of the Euro-
pean Commission.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SETN ’16, May 18-20, 2016, Thessaloniki, Greece
c© 2016 ACM. ISBN 978-1-4503-3734-2/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2903220.2903236

l-dimensional space formed by the adopted measurements
(feature space). Under this perspective, clustering can be
considered as the identification of aggregates of points (clus-
ters) in the feature space. According to the shape of these
aggregates several types of clusters result. The most well
studied case, for which most of the existing clustering algo-
rithms have been invented (e.g. k-means [5], fuzzy c-means
[2], possibilistic c-means [8] and their numerous variants, see
e.g. in [12], [6] and the references there in) is the case where
the points are aggregated around a central point (that is,
they form compact and hyperellipsoidally shaped clusters).
Another interesting case, which has been studied less inten-
sively in the last three decades, is the one where clusters are
formed by points that are arranged around a surface in the
feature space (e.g. [1], [2]). A significant special case of the
latter is the one where the surface is a linear variety (i.e., a
hyperplane in the feature space).

In the sequel, we focus on cases where the data points are
spread around (l−1)-dimensional hyperplanes in the Rl fea-
ture space such as those shown in Fig. 1. This problem may
arise in several applications, such as low level image process-
ing and computer vision systems, where after the detection
of the edge pixels in an image, there is the need to identify
lines around which they lie (in this case it is l = 2). This may
be a first step in identifying the objects encountered in the
scene depicted in the image under study. Another applica-
tion, where identification of hyperplane clusters is required,
is blind source separation (see [10] for details).

The first attempts to deal with linear variety-shaped clus-
ters1 go back to the works of Bezdek et. al. [1], where the
fuzzy c-means algorithm is extended to deal with linear va-
riety clusters. In that approach, each linear variety Hj of
dimension 0 < r < l is characterized by a point aj in it plus
a set of r vectors dj ’s that span it. The resulting algorithm,
called fuzzy c-varieties (FCV) algorithm, is an iterative one
and tries to adjust the parameters aj and dj of each Hj ,
so as to match the linear variety-shaped clusters underlying
the data set. An issue that may arise with this formulation
is that a single variety can model two or more different clus-

1Note that a linear variety in the Rl space may be any
subspace in it of dimension r < l. Clearly, a hyperplane is a
special case of a linear variety with r = l − 1.

http://dx.doi.org/10.1145/2903220.2903236
tronto
Επισήμανση

(a) ` = 2

(b) ` = 3

Figure 1: Examples of data sets where the data
points are spread around (`− 1)-dimensional hyper-
planes in the <` feature space for (a) ` = 2 and (b)
` = 3.

ters (for example, for l = 2, a line may model two or more
collinear clusters). Although in general this feature may be
undesired, it may be proved useful in certain applications;
for example, in the identification of linear elements, such as
roads in images depicting urban areas, where parts of a cer-
tain road (linear cluster) may not be depicted although they
should. In this case, the algorithm performs some kind of
“reconstruction” of the road.

Different fuzzy based formulations that may identify lin-
ear clusters as special cases are employed in the Gustafson-
Kessel [4] and Gath-Geva [3] algorithms. However, a major
restriction that is inherent to all fuzzy clustering schemes, is
the requirement for a priori knowledge of the true number
of clusters, m. This problem has been addressed via two
main alternatives. According to the first one, the adopted
clustering algorithm is executed for several values of m and
each resulting clustering is evaluated in terms of a prespeci-
fied criterion. The clustering that optimizes this criterion is
the one that is finally selected (see e.g. [12]). According to
the second one, the adopted algorithm is executed once for
an overdetermined number of clusters and a post processing
follows, which try to merge almost coincident clusters (see
e.g. [7]).

A family of algorithms that (in principle) set us free from
the requirement of knowing m a priori, is that of the possi-
bilistic algorithms. In this case, provided that the algorithm
starts with an overestimated number of clusters, mini(> m),

it has the ability to uncover the true clusters, although some
of them will be duplicated (these may be easily removed
after the termination of the algorithm)2. However, these
algorithms require a careful adjustment of a set of param-
eters. This issue is addressed successfully by the recently
proposed Adaptive Possibilistic c-Means (APCM) algorithm
[13], where (a) the involved parameters are adapted as the
algorithm evolves and (b) the number of initial clusters re-
duces as the algorithm evolves towards (hopefully) the true
one.

In this paper, we extent the APCM algorithm to han-
dle hyperplane clusters. The paper is organized as follows.
In Section 2, a brief overview of the APCM algorithm is
given, while in Section 3, the proposed Adaptive Possibilis-
tic c-Hyperplanes (APCH) algorithm is derived. Section 4
contains experimental results that validate the algorithm.
Finally, Section 5 concludes the paper.

2. RELATED WORK
In this section we give a brief description of the APCM

algorithm [13], which is the ancestor and basis of the pro-
posed APCH algorithm descibed in the next section. Let
X = {xi ∈ Rl, i = 1, . . . , N} be the set of data points to
be clustered. Let also Θ = {θj ∈ Rl, j = 1, . . . ,m} be a
set of vectors in the feature space called cluster represen-
tatives or, simply, representatives, where each one of them
corresponds to a cluster Cj . In addition, U = [uij] is the
N ×m matrix, whose (i, j)-th element uij measures the “de-
gree of compatibility” of xi with cluster Cj . Note that (a)
all entries of U lie in the range [0, 1] and (b) all the entries
of each row of U (i.e. all uij ’s that correspond to a given
xi) are independent from each other. Finally, let mini de-
note the number of clusters (representatives) with which the
algorithm is initialized.

The APCM algorithm tries to identify compact and hyper-
ellipsiodally - shaped clusters, i.e. clusters where the points
are aggregated around a certain point in the feature space.
To this end, the algorithm tries to move the representative
vectors towards the center of dense in data regions, inde-
pendently from each other. After the algorithm terminates,
m (out of mini) representatives θj will have been survived
and placed to the centers of dense in data regions (clusters).
Under this perspective, we say that such a θj represents its
corresponding cluster.

The updating equations for uij ’s and θj ’s, in APCM result
from the minimization of the following cost function

JPCM (Θ, U) =

m∑
j=1

[
N∑
i=1

uijd(xi, Cj)+

+ γj

N∑
i=1

(uij lnuij − uij)

]
(1)

as is the case with the (second) classical PCM algorithm [8],
where d(xi, Cj) ≡ ‖xi − θj‖2. Setting γj = η̂

α
ηj , where α is

a user-defined parameter that usually takes values around 1
(the remaining notation is explained in the algorithmic form
of APCM) and minimizing with respect to uij and θj , we

2Possibistic versions of the Gustafson-Kessel and Gath-Geva
algorithms are discussed in [6]. Another relevant algorithm
is discussed in [11].

end up with

uij = exp

(
−‖xi − θj‖

2

γj

)
(2)

θj =

∑N
i=1 uijxi∑N
i=1 uij

(3)

However, the difference between APCM and PCM is that
in the former, γj ’s (ηj ’s) are no longer constant but they
are adapted at each iteration of the algorithm. In addition,
APCM provides also a mechanism for pruning clusters as it
evolves, which is related to the adaptation of γj ’s. The steps
of APCM are given below.

The APCM algorithm

• Input: X, mini, α

• t = 0

• Initialization:

– Initialize θj(t)’s via Fuzzy c-means

– Set ηj(t) =
∑n

i=1 u
FCM
ij ‖xi−θj(t)‖∑n
i=1 u

FCM
ij

, j = 1, ...,mini

– Set η̂ = minj=1,...,mini ηj(t)

– Set m(t) = mini

• Main phase

– Repeat

∗ Set uij(t) = exp
(
−α
η̂

d(xi,Cj(t))

ηj(t)

)
, i = 1, ..., N ,

j = 1, ...,m(t)

∗ Set θj(t + 1) =
N∑
i=1

uij(t)xi

/
N∑
i=1

uij(t) , j =

1, ...,m(t)

∗ Remove Cj if there is no xi such that uij(t) =
maxq uiq(t), j = 1, . . . ,m(t) and decreasem(t)
to m(t+ 1) accordingly.

∗ Set ηj(t+ 1) =
1

nj(t)

∑
xi:uij(t)= max

r=1,...,m(t+1)
uir(t)

‖xi−µj(t)‖,

j = 1, ...,m(t+ 1)

∗ t = t+ 1

– Until the difference in θj ’s between two succes-
sive iterations becomes suffciently small.

– Return Θ, U

Note that µj is the mean of the data points that are most
compatible with cluster Cj (a more rigorous treatment can
be found in [13]).

3. THE PROPOSED ADAPTIVE POSSIBILIS-
TIC C-HYPERPLANES (APCH) ALGO-
RITHM

The proposed APCH algorithm is an extension of APCM
where now the cluster representatives are hyperplanes. Thus,
in this case, each θj is replaced by a pair of the form (wj , w0j),
which corresponds to the hyperplane

Hj : wT
j x+ w0j = 0

where wj = [wj1, . . . , wjl]
T and x = [x1, . . . , xl]

T . Now,
the (squared) distance of a data point xi from a cluster Cj
is the distance of the point from its corresponding represen-
tative Hj , which is

d(xi, Cj) = (wT
j xi + w0j)

2 (4)

subject to the constraint that wj
Twj = 1 (see Fig. 2). Un-

der the above evidence, the cost function of JPCM is modi-
fied to

JAPCH(Θ, U) =

m∑
j=1

[
N∑
i=1

uijd(xi, Cj)+

+ γj

N∑
i=1

(uij lnuij − uij)− λj(wT
j wj − 1)

]
(5)

where d(xi, Cj) is given by eq. (4). Clearly, minimizing
JAPCH with respect to uij , we end up with eq. (2), where
now the distance is defined as in eq. (4). Equating the
gradient of JAPCH with respect to w0j to zero, we obtain
after some manipulations

w0j = −wT
j θj , (6)

where

θj =

∑N
i=1 uijxi∑N
i=1 uij

(7)

Figure 2: Graphical representation of the distance
d(xi, Cj) of a point xi from the representative Hj of
the cluster Cj.

Equating the gradient of JAPCH with respect to wj to
zero and utilizing eq. (6), we end up with

N∑
i=1

uij(xi(xi − θj)T)wj = λjwj (8)

Thus, wj is an eigenvector of the matrix

Aj =

N∑
i=1

uijxi(xi − θj)T (9)

that corresponds to the j-th cluster. Since wj is the di-
rection vector of Hj , that is, it is perpendicular to it, we
choose wj to be equal to the (normalized) eigenvector that
corresponds to the minimum eigenvalue of Aj (that is, we
choose the direction of the minimum spread around Hj , see
Fig. 3). This choice is further justified by the fact that, as it

can be proved, Aj equals to the sample possibilistic covari-

ance matrix of Cj , Σj =
∑N

i=1 uij(xi−θj)(xi−θj)
T∑N

i=1 uij
, scaled by∑N

i=1 uij , i.e.

Aj =

(
N∑
i=1

uij

)
Σj (10)

As a consequence, Aj is, in practice, positive definite and
thus invertible.

w
j

(a) ` = 2

(b) ` = 3

Figure 3: The direction vector wj of Hj is the eigen-
vector that corresponds to the minimum eigenvalue
of Aj. Examples for (a) ` = 2 and (b) ` = 3.

In light of the above analysis, the APCH algorithm differs
from its ancestor APCM, in two points, namely (a) in the
initialization of its parameters and (b) in the updating of the
representatives, where now the parameter representatives for
each Cj are wj and w0j . More specifically, in the initializa-
tion phase, we generate mini clusters, Cj , j = 1, . . . ,mini,
based on the mini “most distant” points in the data set, de-
noted by θj , j = 1, . . . ,mini,

3 and we cluster each of the
rest points xi of the data set X to the cluster Cj whose
θj lies closest to xi, among all θq’s, q = 1, . . . ,mini (hard
clustering). Denoting by Xj the points of X that have been
assigned to cluster Cj , we compute the “hard version” of Aj
in (9), i.e. A′j =

∑
xi∈Cj

xi(xi − θj)T , j = 1, . . . ,mini and

we set wj equal to the (normalized) eigenvector that corre-
sponds to the smallest eigevalue of A′j . Next, we compute
w0j via (6) and, finally, we set ηj equal to the minimum
eigenvalue of A′j bounded above by a multiple of the ex-
pected variance that exhibit the (elongated) clusters around
their corresponding hyperplane representative4. Next, dur-
ing the iterative phase of the algorithm, the updating of
wj ’s, w0j ’s and ηj ’s, is carried out in the same way as in
the initialization phase, with the only difference that in the
updating of wj ’s, Aj is taken into account (eq. 9), instead

3They are determined by applying the MaxMin procedure
given in [9], p.88.
4Actually, the algorithm turns out to be very robust to the
choice of this bound.

of A′j . The main steps of the proposed algorithm are sum-
marized below.

The APCH algorithm

• Input: X, mini, α

• t = 0

• Initialization:

– Find the mini “most distant” points θj(t)’s, j =
1, . . . ,mini in X.

– For each cluster Cj determine the set of points
Xj that are closer to its corresponding θj(t) , j =
1, . . . ,mini, in terms of Euclidean distance

– FormA′j =
∑
xi∈Xi

xi(xi−θj(t))T , j = 1, . . . ,mini.

– Set wj(t) equal to the eigenvector that corre-
sponds to the smallest eigenvalue of A′j .

– Set w0j(t) according to eq. (6).

– Set ηj(t) equal to the smallest eigenvalue of A′j ,
bounded above (see text), j = 1, . . . ,mini.

– Set η̂ = minj=1,...,mini ηj(t)

– Set m(t) = mini

• Main phase

– Repeat

∗ Set uij(t) = exp
(
−α
η̂

d(xi,Cj(t))

ηj(t)

)
, i = 1, ..., N ,

j = 1, ...,m(t)

∗ Set θj(t+1) =
∑N

i=1 uij(t)xi∑N
i=1 uij(t)

, j = 1, . . . ,m(t)

∗ Form Aj(t+1) =
∑N
i=1 uij(t)(xi(xi−θj(t+

1))T), j = 1, . . . ,m(t).

∗ Set wj(t + 1) equal to the eigenvector that
corresponds to the smallest eigenvalue ofAj(t+
1), j = 1, . . . ,m(t).

∗ Set w0j(t + 1) according to eq. (6), j =
1, . . . ,m(t).

∗ Set ηj(t + 1) equal to the smallest eigen-
value of Aj , bounded above (see text), j =
1, . . . ,m(t).

∗ Remove Cj if there is no xi such that uij(t) =
maxq uiq(t), j = 1, . . . ,m(t) and decreasem(t)
to m(t+ 1) accordingly.

∗ t = t+ 1

– Until the difference in [wT
j w0j]’s between two

successive iterations becomes sufficiently small.

– Return wj ’s, w0j ’s, U

Remark 1: After the algorithm termination, there may ex-
ist hyperplanes (representatives) that do not correspond to
physical clusters (usually, they intersect several physical clus-
ters and they consist of relatively few points, that lie in
the physical clusters they intersect). In order to identify
and remove such clusters we work as follows: we identify
the clusters of relatively small size (e.g. less than half of
the mean size of clusters resulted by the algorithm) and we
check whether they consist of more than one connected com-
ponents (sets of points that lie away from each other). If this
is the case, the cluster under study is removed. Also, there

(a) FCV (b) Initial stage of APCH (c) APCH

Figure 4: The clustering results of (a) FCV (m = 4) and (c) APCH (mini = 7, α = 1) for experiment 1. The
initial stage of APCH is shown in (b).

(a) FCV (b) APCH initial stage (c) APCH

Figure 5: The clustering results of (a) FCV (m = 8) and (c) APCH (mini = 20, α = 1) for experiment 2. The
initial stage of APCH is shown in (b).

may be duplicate clusters that have not removed. The crite-
rion here is to identify all sets of near coincident hyperplanes
and to keep only one of them.
Remark 2: As it will also be verified by the experimental
results, the algorithm is capable of identifying very good
initializations, i.e., initializations where most of the hyper-
plane clusters have been (at least crudely) identified. Of
course, this make things easier during the main phase of the
algorithm.

4. EXPERIMENTAL RESULTS
In this section we give some experimental results that ver-

ify the effectiveness of the APCH. We note again that the
main advantage of the proposed algorithm compared to its
fuzzy predecessors, is that it does not need the exact num-
ber of clusters a priori, but, rather, a crude overestimate of
it. As the experimental results indicate, the algorithm is, in
principle, capable to deal with demanding cases of intersect-
ing linear clusters. In the sequel, we compare the clustering
performance of APCH with that of FCV [1] for several syn-
thetic data sets.

Experiment 1: Consider a two-dimensional data set con-
sisting of N = 1200 points, which form four line clusters,

each one having 300 data points5. The aim here is to ex-
plore the ability of APCH and FCV to determine the clus-
ters. Fig. 4a shows the clustering result obtained using the
FCV with m = 4. Figs. 4b, 4c depict the initialization stage
and the final result of APCH, respectively, with mini = 7
and α = 1. As it can be deduced, both clustering algorithms
manage to detect the underlying clustering structure.

Experiment 2: Consider a two-dimensional data set with
N = 2400 points, which form eight line clusters, each one
consisting of 300 data points, arranged in a grid (see Fig. 5).
As shown in Fig. 5a, FCV (m = 8) fails to distinguish any
of the underlying line clusters. On the other hand, the
APCH (mini = 20, α = 1) identifies correctly all clusters
(see Fig. 5c). It is noted again that the APCH algorithm
achieves very good initializations with almost all lines being
crudely approximated (see Fig. 5b).

Experiment 3: Consider now a two-dimensional data set
consisting of N = 7500 points which form 25 line clusters,
each one having 300 data points. 16 of these line clusters
form 4 squares and the rest 9 form 3 triangles arranged ran-
domly in the <2 space, as shown in Fig. 6. Fig. 6a shows

5In all the experiments the standard deviation of the points
around the corresponding hyperplanes is 0.01.

(a) FCV (b) Initial stage of APCH (c) APCH

Figure 6: The clustering results of (a) FCV (m = 25) and (c) APCH (mini = 60, α = 1) for experiment 3. The
initial stage of APCH is shown in (b).

(a) Image (b) Detected edges (c) APCH result

Figure 7: (a) The image of experiment 4, (b) The detected edge pixels using the Canny method with threshold
0.2 (note that some undesired edge pixels result at the bottom right) and (c) the clustering result of APCH
(mini = 30, α = 0.3).

the clustering result obtained using the FCV with m = 25.
Figs. 6b, 6c depict the initialization stage and the final re-
sult of APCH with mini = 60 and α = 1, respectively. As
it can be seen, FCV manages to detect only 4 of the 25 line
clusters, whereas APCH, exploiting its good initialization,
correctly identifies all clusters.

The superior results of APCH to the last two experiments
may be partially attributed to its good initialization, con-
trary to FCV that is randomly initialized.

In the next experiment, we consider only the new APCH
algorithm, aiming to accentuate its ability to successfully de-
tecting lines that correspond to edges in real two-dimensional
images.

Experiment 4: Consider the real image shown in Fig. 7a
that depicts a T shape. We first apply the Canny method
[14] with threshold 0.2 for detecting the edge pixels of the im-
age (Fig. 7b). The aim here is to detect the linearly shaped
clusters formed by these edge pixels. The resulting image
was considered as the input of the APCH algorithm. Fig. 7c
shows the clustering result of APCH for mini = 30 and
α = 0.3. As it can be deduced, APCH succeeds in identify-
ing all the line clusters of the data set, while, additionally,
achieves very accurate detection for all but one of them.

5. CONCLUSIONS
In this paper a novel possibilistic clustering algorithm,

called APCH, for identifying clusters that spread around
(` − 1)-dimensional hyperplanes in the <` space is intro-
duced. The algorithm needs only an overestimated number
of the clusters lying in the data set and (in principle) has
the ability to uncover complex arrangements of intersected
clusters. Experimental results show the effectiveness of the
algorithm compared with other related methods.

Acknowledgement: We would like to thank Dr. Y.
Kopsinis for bringing to our attention [10].

6. REFERENCES
[1] Bezdek J.C., Coray C., Gunderson R, Watson J.:

Detection and Characterization of Cluster Substructure
II. Linear Structure: Fuzzy c-varieties and Convex
Combinations thereof. SIAM Journal of Applied
Mathematics 40(2), 358-372 (1981)

[2] Bezdek J.C., Keller J., Krisnapuram R., Pal N.R.:
Fuzzy models and Algorithms for Pattern Recognition
and Image Processing, Springer (2005)

[3] Gath I., Geva A.B.: Unsupervised Optimal Fuzzy
Clustering. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 11, 773-781 (1989)

[4] Gustafson E.E., Kessel W. C.: Fuzzy clustering with a
fuzzy covariance matrix. Proc. IEEE CDC, San Diego,
CA, 1979, 761-766 (1979)

[5] Hartigan J.A., Wong M.A.: Algorithm AS136: A
k-means clustering algorithm. Journal of the Royal
Statistical Society, 28, 100-108 (1979)

[6] Höppner F., Klawonn F., Kruse R., Runkler T.: Fuzzy
Cluster Analysis - Methods for Classification, Data
Analysis and Image Recognition, Wiley (1999)

[7] Krishnapuram R., Freg C.-P.: Fitting an unknown
number of lines and planes to image data through
compatible cluster merging. Pattern Recognition, 25(4),
385-400 (1992)

[8] Krishnapuram R., Keller J.M.: The possibilistic
c-means algorithm: insights and recommendations. IEEE
Transactions on Fuzzy Systems, 4, 385-393 (1996)

[9] Mirkin B.: Clustering for Data Mining: A Data

Recovery Approach. CRC Press (2005)

[10] Plumbley M.D., Blumensath T., Daudet L., Gribonval
R., Davies M.E.: Sparse representation in Audio and
Music: from Coding to Source separation. Proceedings
of the IEEE, 98(6), 995-1005 (2010)

[11] Škrjanc I., Dovžan D.: Evolving Gustafson-Kessel
Possibilistic c-Means Clustering. Procedia Computer
Science, 53, 191-198 (2015)

[12] Theodoridis S., Koutroumbas K.: Pattern
Recognition, 4th edn. Academic Press (2009)

[13] Xenaki S.D., Koutroumbas K.K., Rontogiannis A.A.:
A Novel Adaptive Possibilistic Clustering Algorithm.
IEEE Transactions on Fuzzy Systems, to appear.

[14] Canny J.: A Computational Approach to Edge
Detection. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 8(6), 679-698 (1986)

	Introduction
	Related work
	The proposed Adaptive Possibilistic c-Hyperplanes (APCH) algorithm
	Experimental results
	Conclusions
	References

