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Abstract—In a plethora of applications dealing with inverse
problems, e.g., image processing, social networks, compressive
sensing, and biological data processing, the signal of interest is
known to be structured in several ways at the same time. This
premise has recently guided research into the innovative and
meaningful idea of imposing multiple constraints on the unknown
parameters involved in the problem under study. For instance,
when dealing with problems whose unknown parameters form
sparse and low-rank matrices, the adoption of suitably combined
constraints imposing sparsity and low rankness is expected to
yield substantially enhanced estimation results. In this paper, we
address the spectral unmixing problem in hyperspectral images.
Specifically, two novel unmixing algorithms are introduced in an
attempt to exploit both spatial correlation and sparse representa-
tion of pixels lying in the homogeneous regions of hyperspectral
images. To this end, a novel mixed penalty term is first defined
consisting of the sum of the weighted £; and the weighted nuclear
norm of the abundance matrix corresponding to a small area of the
image determined by a sliding square window. This penalty term is
then used to regularize a conventional quadratic cost function and
impose simultaneous sparsity and low rankness on the abundance
matrix. The resulting regularized cost function is minimized by:
1) an incremental proximal sparse and low-rank unmixing algo-
rithm; and 2) an algorithm based on the alternating direction
method of multipliers. The effectiveness of the proposed algorithms
is illustrated in experiments conducted both on simulated and
real data.

Index Terms—Abundance estimation, alternating direction
method of multipliers (ADMM), hyperspectral images (HSIs),
proximal methods, semisupervised spectral unmixing (SU), simul-
taneously sparse and low-rank matrices.
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1. INTRODUCTION

PECTRAL unmixing (SU) of hyperspectral images (HSIs)
has attracted considerable attention in recent years both
in research and applications. SU can be considered as the
process of 1) identifying the spectral signatures of the materials
(endmembers) whose mixing generates the (so-called) mixed
pixels of an HSI and 2) deriving their corresponding fractions
(abundances) in the formation of each HSI pixel [1]. The latter
constitutes the so-called abundance vector of the pixel. Those
two tasks have given rise to a plethora of methods tackling
either one or both of them. Diverse statistical and geometrical
approaches have been lately put forward in the literature addres-
sing the first step, which is commonly known as endmembers’
extraction (e.g., [2] and [3]). On the other hand, there have been
many research works that assume that the spectral signatures
of the endmembers are available and focus on the abundance
estimation task. Algorithms that fall into this class need to make
a fundamental assumption concerning the inherent mixing
process that generates the spectral signatures of the HSI pixels.
In view of the latter, the linear mixing model (LMM) holds
a dominant position being widely adopted in numerous state-
of-the-art unmixing algorithms (see, e.g., [1] and the references
therein). More specifically, these algorithms are based on the
premise that the pixels’ spectral signatures are generated by
a linear combination of endmembers’ spectra contained in a
predefined set, which is usually termed as endmembers’ dic-
tionary. Abundance estimation is henceforth treated as a linear
regression problem. The LMM has prevailed over other models,
due to its simplicity and mathematical tractability. Physical
considerations that naturally arise impose various constraints
on the unmixing problem. In this context, the so-called abun-
dance nonnegativity and the abundance sum-to-one constraints
are usually adopted. That said, unmixing can be viewed as a
constrained linear regression problem.

In an attempt to achieve better abundance estimation results,
recent novel ideas promote the incorporation of further prior
knowledge in the unmixing problem. In light of this, several
methods bring into play the sparsity assumption [4]-[7]. Its
adoption is justified by the fact that (in practice) only a few
of the available endmembers participate in the formation of a
given pixel, particularly in the case of large-size endmembers’
dictionaries. In other words, it is envisaged that pixels’ spectral
signatures accept sparse representations with respect to a given
endmembers’ dictionary; that is, they are deemed to have only

0196-2892 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.


mailto: parisg@noa.gr
mailto: themelis@noa.gr
mailto: tronto@noa.gr
mailto: koutroum@noa.gr
tronto
Επισήμανση


4776

a few nonzero values. Practically, sparsity is imposed on abun-
dances via the ¢1-norm regularization [4]-[6] when a deter-
ministic approach is followed. On the other hand, in Bayesian
schemes, appropriate sparsity inducing priors are adopted for
the abundance vectors [7], [8]. Spatial correlation is another
constraint that has been recently incorporated in the unmixing
process, offering stimulating results [9]-[11]. In that vein, the
additional information that exists in the homogeneous regions
of HSIs is subject to exploitation. In fact, in such regions, there
is a high degree of correlation among the spectral signatures of
neighboring pixels. It is hence anticipated that there should also
be correlation among the abundance vectors corresponding to
these pixels. This has led to the development of novel unmixing
schemes, whereby the information provided by the neighboring
pixels is taken into account in the abundance estimation of each
single pixel.

In this spirit, a collaborative deterministic scheme, which is
termed CLSUnSAL, was recently proposed in [11], which uses
a wealth of information stemming from all the pixels of the
examined HSI. CLSUnSAL adopts dictionaries consisting of
a large number of endmembers. Then, it assumes that spatial
correlation translates into abundance vectors sharing the same
support set, i.e., presenting a similar sparsity pattern. Thus, the
matrix whose columns are the abundance vectors of all HSI
pixels (called abundance matrix) should meaningfully be of a
joint-sparse structure.! To impose joint sparsity, CLSUnSAL
applies a £5 1-norm on the sought abundance matrix, which is
then used to penalize a suitably defined quadratic cost func-
tion. Minimization of the resulting regularized cost function
is performed by an alternating direction method of multipliers
(ADMM) [13]. A similar perspective is followed in [10], but in
a “localized” fashion. Specifically, Qu et al. [10] proposed the
use of a 3 x 3 square window that slides in the spatial dimen-
sions of the image. The abundance vector of the central pixel
is then inferred by taking into account the spectral signatures
of the adjacent pixels contained in the window. Based on this
idea, two algorithms are derived: the MM V-ADMM, which, in
a similar fashion as CLSUnSAL, seeks joint-sparse abundance
matrices utilizing the ¢ ;-norm, and the LRR algorithm, which
promotes a low-rank structure on the abundance matrix. In fact,
the LRR algorithm presents an alternative way of modeling
the spatial correlation among neighboring pixels. That is, it
assumes that the correlation among pixels’ spectral signatures is
reflected as linear dependence among their corresponding abun-
dance vectors. Apparently, the matrix formed by these abun-
dance vectors should be of low rank. That said, a nuclear norm
is imposed on the abundance matrix, and a properly adapted
augmented Lagrangian cost function is minimized in an alter-
nating minimization fashion.

In this paper, we introduce a novel idea for performing
abundance estimation in HSIs under the LMM, which simulta-
neously takes spatial correlation and sparsity into consideration.
As in [10], we also utilize a k X k square sliding window with
k odd, and we consider the spectral signatures of adjacent
pixels lying in it. Departing from the usual paradigm, we

1A joint-sparse Bayesian unmixing scheme was also presented in [12].
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propose to seek for x2-column abundance matrices that are
simultaneously sparse and of low rank. SU is thus formulated as
a sparse reduced-rank regression problem [14]. As previously
stated, low rankness naturally arises in abundance matrices
corresponding to relatively homogeneous regions, due to the
linear dependence of the respective abundance vectors. At the
same time, sparsity is a reasonable hypothesis that still holds
independently, as previously explained, within each individual
abundance vector. Broadly speaking, imposing multiple struc-
tures on the same mathematical object when dealing with
inverse problems is a strategy still in its very infancy in the sig-
nal processing and machine learning literature [15]-[18]. The
aforementioned sparsity and low-rank constraints give rise to a
mixed penalty term that regularizes a least squares fitting func-
tion through the weighted ¢;-norm and the weighted trace norm
of the abundance matrices, respectively. To minimize the cost
function, two novel iterative algorithms are proposed, namely,
the incremental proximal sparse low-rank unmixing algorithm
(IPSpLRU) and the alternating direction sparse and low-rank
unmixing algorithm (ADSpLRU). As implied by its name,
IPSpLRU is based on an incremental application of proximal
operators on the individual terms that compose the cost function.
Such a newly introduced approach [19] is of particular interest
among others when solving optimization problems character-
ized by multiple constraints. Optimization problems of this
type can usually be expressed by cost functions consisting of
multiple component functions of the unknown parameter, as is
also the case with the problem studied in this paper. Motivated
by this, we have adopted the incremental proximal strategy in
[19] that, due to its nature, leads to a computationally efficient
iterative estimation scheme. On the other hand, ADSpLRU is an
ADMM-based approach properly adapted to our problem for-
mulation. ADSpLRU offers, in general, better estimation per-
formance than IPSpLRU, although at a higher computational
cost. The proposed algorithms are compared with state-of-
the-art unmixing techniques, and their effectiveness is demon-
strated via extensive simulated and real-data experiments.
Notation: Matrices are represented as boldface uppercase
letters, e.g., X, and column vectors are represented as boldface
lowercase letters, e.g., x, whereas the ith component of vector
x is denoted by z;, and the ijth element of matrix X is denoted
by x;;. Moreover, T denotes transposition, Iy is the N x N
identity matrix, O is a zero matrix with respective dimensions,
1 denotes the all-1’s vector, rank(X) is the rank of X, tr[X]
denotes the trace of matrix X, diag(x) is a diagonal matrix
with the elements of vector x on its diagonal, o;(X) is the ith
largest singular value of X, || - ||2 is the standard ¢5 (Euclidean)
vector norm, || X|, = Tr(VXTX) = szi((x) 7;(X) denotes
the nuclear norm (or trace norm), [ X[ = >_,; >~ 2] is the
sum of the absolute values of all entries of X (called the

— 2 ;
¢1-norm), and || X||p = />, >_; 7, stands for the Frobenius

norm. A(-) denotes the Gaussian distribution. Moreover, R*
stands for the k-dimensional Euclidean space, and Ri denotes
the k-dimensional nonnegative orthant. The matrix inequal-
ity X > Y declares element-wise comparison, and © stands
for component-wise multiplication between matrices of the
same size.
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Fig. 1. Graphical illustration of the sliding window approach of our unmixing
algorithms. The abundance matrix is considered sparse and of low rank (in this
example, rank = 2). Blue cells in matrix W represent zero values.

II. PROBLEM FORMULATION

We consider an L-spectral band HSI, whose pixels are
composed of N endmembers. Let ® = [¢p1, ¢, . .., Py stand
for the L x N endmembers’ dictionary, where ¢; € R%, i =
1,2,..., N, is the spectral signature of the ith endmember.
Consider also a small sliding square window that contains K
adjacent pixels (K = k x k), with the measurement spectra
v, k=1,2,..., K, that are assumed to share the same end-
member matrix ®, as graphically shown in Fig. 1 for K = 9.
In matrix notation, let Y = [y1,y2,...,¥k] be the L x K
matrix containing the spectra of the K pixels in the window
as its columns. Utilizing the LMM, the mixing process can be
described by the following equation:

Y=3W+E ey

where W € Rf *K is the abundance matrix whose columns are
the N-dimensional abundance vectors of the corresponding K
pixels, and E € RL*K is an independent and identically dis-
tributed (i.i.d.) zero-mean Gaussian noise matrix. Due to phys-
ical considerations, the abundance coefficients in W should
satisfy two constraints, namely, the abundance nonnegativity
and the abundance sum-to-one [20], i.e.,

W >0and1”"W =17, (2)

Nevertheless, in the following, we relax the sum-to-one con-
straint based on the reasoning presented in [6]. That said, the
general problem considered in this paper is as follows: “Given
the spectral measurements Y and the endmember matrix ®,
estimate the abundance matrix W subject to the nonnegativity
constraint.” This is a typical inverse problem, which has been
addressed via many methods in the signal processing literature.
However, the efficacy of the proposed approach lies in the
exploitation of the intrinsic structural characteristics of W, i.e.,
sparsity and low rankness. To this end, we concurrently impose
two naturally justified structural constraints on the abundance
matrix W, which promote low rankness and sparsity.
Low-Rankness Property: A logical consideration is that all
pixels belonging to the same window are correlated, i.e., they
are composed of the same materials, although maybe in dif-
ferent proportions. This property suggests that the abundance
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matrix W to be estimated has linearly dependent columns and,
thus, is either of low rank or can be well approximated by a low-
rank matrix. In the bibliography, low-rank matrix estimation
techniques have recently emerged as powerful estimation tools,
e.g., [10] and [21]-[23]. These estimators are mainly based on
regularization by the nuclear norm of W. A similar regular-
ization is also adopted in this paper to impose the low-rank
constraint.

Sparsity Property: Another typical assumption is that only
a small portion of the N endmembers will be present in the
spatial area marked by the k X x shifting window. In other
words, it is safe to assume that the abundance matrix W has a
sparse representation in terms of the endmember matrix dictio-
nary ®. This motivates the use of a sparsity-cognizant estimator
for abundance matrix W, which is envisaged to produce more
robust unmixing results. It should be noted that sparsity has
already been successfully exploited in many SU algorithms,
e.g., [5]-{8], [11], and [24].

Itis worth mentioning that the sparsity of W does by no means
invalidate its low rankness. On the contrary, both structural
hypotheses are assumed to hold simultaneously on W, although
low rankness implicitly imposes some kind of structure on
sparsity. So far, reports in the SU literature explore either the
sparsity, e.g., [7] and [24], or the low-rankness property of W,
e.g., [10]. To the best of our knowledge, this is the first time
that SU is formulated as a simultaneously sparse and low-rank
matrix estimation problem. That is, we seek a matrix W > 0
that, apart from fitting the data well in the least squares sense,
has minimum rank and only a few positive elements. To achieve
this, we define the following optimization problem:

(P1): W= argmin {%|Y—<I>W||% +v[[W1 + T||W||*}
WeRY X ¥

3)
where v, 7 > 0 are parameters that control the tradeoff between
the sparsity and rank regularization terms and the data fidelity
term. Being parameterized, (P1) becomes flexible enough to
impose either one of the two structures on W. For example,
by setting v = 0, (P1) results in searching for a matrix that is of
low-rank structure. Accordingly, setting 7 = 0 is tantamount to
searching for a sparse matrix. The flexibility of the proposed
model certainly provides an advantage over either low-rank
or sparse estimation methods, as will be demonstrated later in
Section IV.

It is also worth pointing out that (P1) involves the convex
surrogates of the zero norm ||W]||p and rank(W), i.e., the
¢1-norm and the nuclear norm, respectively. In an attempt to
further promote the robustness and consistency of the proposed
estimator, we propose to use weighted ¢1 and nuclear norms
in (P1). Such an approach is expected to enhance the sparsity
on the individual elements w;; and the singular values o;(W),
e.g., [25]-[28]. These weighted norms are defined as

N K
2D aiglwi] @)
i=1 j=1
rank(W)

> bioi(W) (5)
=1

A © Wl

W]

b,x —
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where a;; and b; are nonnegative weighting coefficients (i.e.,
ai; > 0 and b; > 0). Utilizing (4) and (5), the proposed opti-
mization problem is rewritten as

o . 1
(P2) : W = argmin {§|Y - ®W|% +7]|A0W|,

N XK
WeRY

+T||W||b,*} . ©®

To the best of our knowledge, such a formulation has not
been used before as a regularizer for promoting simultaneous
sparsity and low rankness. In the following, problem (P2) will
be studied under the following assumption.

Assumption 1: For the weighting coefficients b; of the nu-
clear norm, it holds that b; = b, =1,2,..., K.

Under Assumption 1, the nuclear norm is convex [27], [29],
whereas the weighted /1-norm is always convex for nonneg-
ative A. Thus, the overall cost function of (P2) is convex.
Alternative options for the selection of parameters A and b
are discussed in Section III-C. Although convex, (P2) un-
der Assumption 1 is a nontrivial problem to solve, due to
the nondifferentiable form of the ¢;-norm and nuclear norm
regularizers [30]. In the following, we suitably explore two
standard convex optimization tools to tackle this problem: an
incremental proximal method and an ADMM-based technique.

III. PROPOSED ALGORITHMS

In this section, we present two algorithms to address the
nonsmooth, constrained, and convex optimization problem in
(P2). The first algorithm comes from the family of incremental
proximal algorithms, which was recently presented and ana-
lyzed in [19], and makes use of the proximal operators of all the
terms appearing in (P2), whereas the second algorithm exploits
the splitting strategy of the ADMM philosophy [13].

A. Incremental Proximal Sparse and Low-Rank
Unmixing Algorithm

Let us first recall that the proximal operator of a function f(-)
is defined as [31], [32]

. 1
prox ) (U) = angagn ( (W) + 52| W = Ul ) 1)

where U € R"** and W € dom(f), the domain of f. In [19],
the following minimization problem is considered:

min > f;(W) (8)

where f;(W), i =1,2,...,m are convex functions, and W C
R™** is a closed convex set. One version of the algorithm
proposed in [19] to solve this problem is the following. The
proximal operators of all f;’s are first derived, and then, a
sequential scheme is defined, in which the proximal operator
of f;(W) is evaluated at the point provided by its predecessor
(the proximal operator of f;_1(W)), for i = 2,3,..., m. This
procedure is repeated in a cyclic manner at each iteration of
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the algorithm.? A convergence and rate of convergence analysis
of this incremental proximal scheme is also given in [19]. It
is worth noting that, as advocated in [19], this incremental ap-
proach favorably suits the minimization problems consisting of
multiple constraints and may offer significant advantages over
conventional nonincremental methods, such as reduced compu-
tational complexity, possibility of distributed processing, etc.

After this short introduction, we may observe that (P2) in (6)
with b = b1 has exactly the same form with the minimization
problem in (8), with respect to W. Embedding the nonneg-
ativity to the cost function in (6), we obtain the following
regularized quadratic loss function:

1
Ly(W)=5 Y = @W|[a+7 | AOWI|1+7(|W b+ Ze (W)
©)

where the nonnegativity constraint is now replaced by the
(convex) indicator function Zg (W), which is zero when all
wi; >0,i=1,2,...,N,j=1,2,..., K, and +o0 if at least
one w;; is negative. Typically, we wish to minimize £, (W)
with respect to W. Notice that £1(W) is the sum of four
convex functions, and the incremental proximal algorithm in
[19] can be directly applied to our problem. Next, the proximal
operators of all four convex functions are obtained. Starting
with the least squares fitting term, we readily get

Prox, 1y gz (W) = (7@ + A 1y) (7Y + A 'W).
(10)

Before we give the proximal operators for the next three terms,
some necessary definitions are in order. First, we define the soft-
thresholding operator on matrix W = [w];; as

SHRA (W) = sign(W) max (0, |W| — A) (11)

where A = [0];; is the matrix that contains thresholding
parameters. Note that soft thresholding in (11) is per-
formed in an element-wise manner, i.e., SHRjs, (w;;) =
sign(w;;) max(0, |w;;| — d;;). Notably, when we apply the
soft-thresholding operator on a diagonal matrix, we shrink only
the elements belonging to its diagonal. These elements are
assumed to be shrinked by thresholding parameters contained
in a vector. With this in mind, we define the singular value
thresholding operation by

SVTs(W) = U SHR4(XZ) VT

where W =UXVT is the singular value decomposition (SVD)
of W, and § is the vector whose entries are the thresholding
parameters that reduce the corresponding diagonal elements of
matrix 3. Finally, we define the projection operator on the set
of nonnegative real numbers, i.e.,

0, v<0

12
v, v>0 (12)

g, (v) = arg min |z —v| = {

which can also be applied to matrices in an element-wise
manner.

’Instead of sequential, a randomized evaluation of the proximals of f;’s
could be also employed [19].
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Utilizing the given definitions, we can compute the proximal
operators for all regularizing convex functions in (9). Specifi-
cally, prox, |z .|, (W) is computed by soft-thresholding matrix
‘W with vA as follows:

Prox,ac.|, (W) = SHRy A (W). (13)

Similarly, the proximal operator of the nuclear norm can be
expressed via a soft-thresholding operation on the singular
values of W, i.e.,

prox (W) =SVT,(W). (14)

T,

Moreover, the computation of proxIR+(_)(W) reduces to a
projection operation, i.e.,

proxIM(.)(W) =TI, (W). (15)
The proposed incremental proximal sparse and low-rank un-
mixing algorithm (IPSpLRU) iterates among the proximal op-
erators (10) and (13)—(15) in a cyclic order until convergence
[19]. IPSpLRU is summarized in Algorithm 1. Note that to
retain the convexity of the composite functions, the weighting
parameters A and b are initialized and kept fixed during the
execution of the algorithm. The issue of dynamic selection of
these parameters is discussed in Section III-C.

The incremental proximal approach employed above for de-
riving IPSpLRU is closely related to the incremental subgadient
method [19], and parameters A, 7, and 7 can be seen as the
step sizes of the corresponding subgradient steps. By invoking
[19, Proposition 3.2], it arises that for fixed values of these
parameters, the incremental proximal algorithm converges to
a neighborhood of the optimum, which shrinks to zero as their
values are closer to zero. On the other hand, exact convergence
to the optimal solution of the cost function is achieved when the
values of these step sizes diminish over iterations, while they
additionally satisfy certain conditions described in [19]. Herein,
parameters A, 7, and 7 are selected to be fixed to positive
constants during the execution of the algorithm. In doing so,
we sacrifice the accuracy of the estimations in favor of a faster
convergence rate.

Algorithm 1 The proposed IPSpLRU algorithm

Inputs Y, ®
Select parameters A, b, A\, 7,y
SetR=(87® + \"'Iy) . P =&"Y,Q=RP
Initialize W© and set ¢ = 1
repeat
W!=Q+ A 'RW"!
W = prox, ae., (W)
Wit = ProX. ., . (W)
Wt = Proxz, () (W)
until convergence
Output: Abundance matrix W = W*

Concerning the computational complexity of IPSpLRU, the
most complex step is the SVD of abundance matrix W*, which
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takes place at each iteration and is on the order of O(K N? +
K3), [33]. Note that matrices R = (®7® + A‘lIN)_l, P=
®7Y, and Q = RP are computed only once at the initializa-
tion stage, and thus, the first step of the algorithm just requires
a fast matrix-by-matrix multiplication. The algorithm rapidly
converges and terminates when either the following stopping
criterion is satisfied:

—12
W' — W[

(16)
WL

where ¢ is a predefined threshold value, or a preset maximum
number of iterations is reached. In the following section, we
present an alternative approach to solve the same problem by
employing a primal-dual ADMM-type technique.

B. ADMM for Sparse and Low-Rank Unmixing

In this section, we develop an instance of the ADMM that
solves the abundance matrix estimation problem (P2). To pro-
ceed, we utilize the auxiliary matrix variables €21, 25, €23, and
2, of proper dimensions (similar to [11] and [24]) and reformu-
late the original problem (P2) into its equivalent ADMM form
[13],i.e.,

min

(PS) :91792793794

1
{319~ Y1 4218 0 2,

+ 7l +Ze. ()] (17
$t. Q2 —PW =0, Q2 - W=0,Q20;—W=0
Q—-W=0.

Based on (P3), the following augmented Lagrangian function is
optimized with respect to W, €21, Q5, 3, and Q4:

‘CQ(W791)QQ7Q37Q4)
1
= 5l — Y5 +91A |,
+ 71y + Zr, (R4) + tr [D] (21 — @W))]
+tr [D3 (22 — W)] + tr [DI (25 — W)]
+ tr [Df (24 — W)]
/J/ 2 2

+ 5 (oW — ;. + IW - f;

W - lf W F) (8
where the L x K matrix D; and the N x K matrices Da,
D3, D, are the Lagrange multipliers, and p > 0 is a positive
penalty parameter. Note that, again, the nonnegative weights A
and b are considered to be constant, and Assumption 1 also
holds here. Let

Q P
|2 Iy
Q= Q5 , G = Iy
Qy In
= 0 0 0
| o —In 0 0
B = 0 0 —In 0 (19)
| 0 0 0 —In
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Then, (18) can be written in an equivalent form as
1

L3(W.QA) = S|~ Y7 +7]A©

+ 7l + Tz, () + SIGW + BR - A} 20)
where A = [AT AT AT AT)", Ay = (1/p)Dy, i =1,....4,
contains the scaled Lagrange multipliers. Having expressed
the augmented Lagrangian function as in (20), the ADMM
proceeds by minimizing £3(W, 2, A) sequentially, each time
with respect to a single matrix variable, keeping the remaining
variables at their latest values. The dual variables (Lagrange
multipliers) are also updated via a gradient ascend step at the
end of each alternating minimization cycle.

To further elaborate on the steps of the ADMM, the optimiza-
tion with respect to W gives

W' = argrr‘%]n L3(W, Q7 AP

(@T@ +3Ly) [T (2L + ALY + Q5+ ALY
+Q AT QT A

(21
Next, the optimization with respect to €21 is performed as
Q= argrgin L3(WE QA
1
1
=—— (Y+up(@W'—AlY). (22)

1+p

The remaining auxiliary variables €25, €23, and €24 are involved
in nondifferentiable norms, namely, the weighted ¢;-norm, the
weighted nuclear norm, and the indicator function, respectively.
In this regard, the minimization task with respect to these vari-
ables resolves to computing some of the proximity operators
that we introduced in the previous section. Minimizing (20)
with respect to €25 yields

Q) = argmin Lo(W', QA7)
=SHR,a (W' — ALY, (23)

In the same vein, {23 is computed by a shrinkage operation, i.e.,
Q= arg min L3(W QA

=SVT, (W — AL 24

Next, for the auxiliary variable €24, a projection onto the non-
negative orthant is required, i.e.,

Q) = argrgin L3(W! QA
4
=M, (W' =AY, (25)

At the final step of the proposed method, the scaled Lagrange
multipliers in A are sequentially updated by performing gradi-
ent ascent on the dual problem [13], as follows:

A=A - dW' 4 Qf

A=A W+ Qi =234, (26)
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The proposed algorithm, which is termed as the alternating di-
rection sparse and low-rank unmixing algorithm (ADSpLRU),
is summarized in Algorithm 2. An iteration of ADSpLRU con-
sists of the update steps given in (21)—(26). Its computational
complexity is O(K LN + K N?) per iteration, which is slightly
higher than that of IPSpLRU, since it usually holds L > N.
However, as verified by the simulations in the following section,
ADSpLRU requires fewer iterations than IPSpLRU to con-
verge,? while its convergence is also guaranteed as explained in
[34]. Moreover, it achieves a slightly lower steady-state error.
Note that all functions that form the objective function £, (W)
in (9) are closed, proper, and convex. Since matrix G has full
column rank, the convergence conditions defined in [34] are
met, and if an optimal solution exists, ADSpLRU converges,
forany p > 0. This, in turn, implies that for the primal and dual
residuals r® and d! given by

r' = GW' + BQ!
dt _ MGTB(Qf o Qt—l)
it holds that r* — 0 and d* — 0, respectively, as t — oo. In this

paper, ADSpLRU stops when either the following termination
criterion:

Ir*ll2 < Cand [[d"fl2 < ¢ 27

holds for the primal and dual residuals, where ( =
V(3N + L)K (™ [13] (the relative tolerance (™! > 0 takes its
value depending on the application and, in our experimental
study, has been empirically determined to 10~#), or the max-
imum number of iterations is reached.

Algorithm 2 The proposed ADSpLRU algorithm

Inputs Y, &
Select parameters A, b, i, 7,y
SetR = (®7® + 3Iy)
Initialize W°, Q° A% and set t = 1
repeat
WE=R[@T( QP+ AT Qb A Qb+
A;;'_l AL t t—1
@y =1/(1+ (Y + n(@W! — A7)
Q% = SHR’YA(V‘: — _At%l )
Q% =SVT,p,(W —tz}lg )
Q) =1g, (W' — A
A=A - ®W!' +Qf
A=A - W'+ Qi =234
until convergence
Output: Abundance matrix W = W*

C. Selection of Weighting Coefficients and
Regularization Parameters

As previously mentioned, in both IPSpLRU and ADSpLRU,
the weighting coefficients A and b are predetermined, satisfy
certain constraints, and remain constant during the execution

3The reason for this may be that ADSpLRU manipulates the whole cost
function at each step, whereas IPSpLRU splits the cost function in a number of
convex terms and treats each term individually at every step of the algorithm.
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TABLE 1
COMPUTATIONAL COMPLEXITY PER PIXEL AND ITERATION
Algorithm IPSpLRU ADSpLRU CSUnSALI [5] | MMV-ADMM [10] | BiICE [8]
Computational complexity | O(KN? + K3) | O(KN? + KLN) O(N?) O(KN?+ KLN) | O(N?)

of the algorithms. As is widely known [25], [26], [29], proper
selection of these parameters is quite crucial as for the accuracy
of the estimations. In view of this, two potential choices are:

a) to select the weighting coefficients based on the least
squares estimate WS of W, i.e.,

1 1
i = (wfjs +E> b= (Ji(WLS) +e> (28)

where € = 10716 is a small constant added to avoid
singularities; or

b) to update them at each iteration ¢ of the algorithms based
on the current estimate Wt of W, i.e.,

1 1
| —— b= —————— ). 29
i wi; + € ’ (Ui(Wt) + e> (29)

It should be noted that both these two options render the
minimization problem (P2) nonconvex, since the weighted
nuclear norm is known to be convex only if the weights b;, i =
1,2, ..., K are nonnegative and nonascending [29], [35]. Addi-
tionally, the reweighting norm minimization problem is known
to be inherently nonconvex [26], whereas its theoretical con-
vergence analysis for these cases is difficult to be established.*
Nevertheless, numerous research works advocate the positive
impact of these nonconvex weighted norms on the performance
of general constrained estimation tasks [26], [27], [29], [35] as
well as in hyperspectral unmixing [36], [37]. Along this line
of thought, the algorithms presented in the previous section are
modified by adopting the reweighting scheme given by (29).
As verified in our empirical study presented in the following
section, such an option enhances to a large degree the effec-
tiveness of the proposed algorithms, while no numerical issues
have been encountered in our experiments.

As far as the remaining parameters A and p are concerned,
which control the convergence behavior of IPSpLRU and
ADSpLRU, respectively, they take positive values, with y close
to zero and A on the order of 1. In all our experiments, we
fixed 4 = 0.01 and A = 0.5. On the other hand, the low-rank-
and sparsity-promoting parameters 7 and « are chosen via fine
tuning, as is commonly done in relevant deterministic schemes.
This is so because the optimal set of these parameters depends
on the unknown in advance particular structure of the sought
abundance matrix, which is an issue that is further explained in
the following section.

IV. EXPERIMENTAL RESULTS

This section unravels the performance characteristics of the
proposed IPSpLRU and ADSpLRU algorithms via experiments
conducted both on simulated and real data. We compare our

“It should be noted that the convergence results for the incremental proximal
algorithms provided in [19] do not hold for nonconvex f;’s.

techniques with three well-known state-of-the-art unmixing
algorithms, namely, the nonnegative constraint sparse unmix-
ing by variable splitting and augmented Lagrangian algorithm
(CSUnSAL) [5], the recently reported nonnegative constraint
joint-sparse method (MMV-ADMM) [10], and, finally, the fast
Bayesian inference iterative conditional expectations (BilCE)
unmixing algorithm [8]. The computational complexity (in
terms of the number of multiplications) of all tested algo-
rithms is given in Table I. As shown in the table, the spatial-
correlation-aware algorithms, namely, IPSpLRU, ADSpLRU,
and MMV-ADMM, present higher complexity since the infor-
mation from K pixels is used for the unmixng of a single pixel.
Moreover, it is noticed that among the two proposed algorithms,
IPSpLRU has lower computational complexity than ADSpLRU
per iteration, resulting from its more simplistic incremental
approach.

In what follows, we first refer to the parameters’ setting
established for all the involved algorithms and the performance
evaluation metrics that are utilized in the experimental proce-
dure. To corroborate the effectiveness and robustness of the
proposed algorithms, we execute six different types of synthetic-
data experiments whose detailed description is given below.
Finally, we empirically compare the abundance maps as revealed
by all examined algorithms, when applied on a real HSL.

A. Setting of Parameters and Performance Evaluation Criteria

For simplicity reasons, we use y for the sparsity-imposing
parameter in all tested algorithms (except BilCE that has no reg-
ularization parameters [7]),  for the Lagrange multiplier regu-
larization parameter of the ADMM-type techniques, and A for
the relevant to p regularization parameter of IPSpLRU. Addi-
tionally, the low-rank-promoting parameter of the proposed al-
gorithms is denoted by 7. Parameters 7 and -y are fine tuned with
ten different values, as shown in Table II. On the other hand,
the Lagrange multiplier regularization parameter p and the
regularization parameter A of IPSpLRU, which influence to a
lesser extent the efficiency of the corresponding algorithms, are
set to a fixed value. To assess the performance of the proposed
algorithms and the competing algorithms, we consider two
metrics for the experiments conducted on synthetic data. First,
the root mean square error (RMSE), i.e.,

I — .
RMSE = N—n;Hwi—wiHQ (30)

where w; and w; represent the estimated and actual abundance
vectors of the ith pixel, respectively; n is the total number of the
pixels in the image under study; and IV, as mentioned in previous
sections, stands for the number of endmembers. The second
metric is the signal-to-reconstruction error (SRE) [6], which

SThe MATLAB code of the proposed algorithms is provided at http://
members.noa.gr/parisg/demo_splr_unmixing.zip.
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TABLE 1II
PARAMETER SETTING
Algorithm H 7 (rank regularization parameter) ‘ 7 (sparsity regularization parameter) ‘ I A
IPSpLRU {0,10710,1079,..., 1071} {0,10710,1079,..., 1071} Not applicable 0.5
ADSpLRU {0,10710,1079,..., 1071} {0,10710,1079,..., 1071} 10—2 Not applicable
CSUnSAL Not applicable {0,1071°,10=°,..., 1071} 1072 Not applicable
MMV-ADMM Not applicable {0,107%0,1079,...,10 1} 1072 Not applicable

reflects the ratio between the power of the signal and the power
of the estimation error, and is given by the following formula:

o2
%anl [[Will5
v it

Of great importance is to notice that for the sliding-window-
based algorithms, the abundance vectors w;’s and their esti-
mates w;’s coincide with the central column vectors of the
corresponding abundance matrices W;’s and their estimates
W,’s, as becomes clear in Fig. 1.

SRE = 10log;, (31

Wi — wil[5

B. Experiments on Simulated Datacubes

In the sequel, N endmembers are randomly selected from
the U.S. Geological Survey (USGS) library Q € R124X498 [38],
so as to form our endmembers’ dictionary ®. Their reflectance
values correspond to L = 224 spectral bands, uniformly distrib-
uted in the interval 0.4-2.5 yum. The LMM of (1) is then utilized
for generating spectral signatures subject to given, different in
each experiment, abundance matrices W's.

1) Reweighting Coefficient Efficiency and Convergence
Behavior of IPSpLRU and ADSpLRU: Herein, we aspire to
demonstrate the merits emerging from the utilization of the re-
weighting of A and b from (29), on the estimation performance
of the proposed algorithms. In light of this, we consider a rank-3
and sparsity level 10% (i.e., 10% of its entries are nonzero)
abundance matrix corresponding to N =50 endmembers, K =9
pixels. Then, K = 9 spectral signatures are generated accord-
ing to the LMM and contaminated by Gaussian noise such that
SNR = 30 dB.

For p =100 realizations, Fig. 2 depicts the normalized
mean square estimation error (NMSE; defined as NMSE(t) =
(1/p) S0y (IW! = W3/ Wi[3), where W and W, are
the estimated matrices at the tth iteration and the true matrices
of the ith realization, respectively) as it evolves over 2000 iter-
ations. Three different cases are investigated, corresponding to
1) updating weighting coefficients from (29), 2) keeping fixed
the weighting coefficients based on (28), and 3) no weighting
coefficients, i.e., the weighted norms degenerate to their non-
weighted versions by setting b =1 and A =[1,1,...1]. As
it is clearly evident in Fig. 2, both IPSpLRU and ADSpLRU
achieve remarkably higher estimation accuracy in terms of
NMSE, when using reweighting as compared with the case
where fixed or no weights are employed. It is thus empirically
verified that the enhanced efficiency of the reweighted ¢; and
nuclear norms, emphatically advocated in [25]-[27], is retained
when using the sum of these two norms. The price to be paid
is that such an option might increase numerical risks, since
the problem is rendered nonconvex and (yet) no theoretical

10° . . .

IPSpLRU no weights
e ADSpLRU no weights
----- ADSpLRU fixed weights
----- IPSpLRU fixed weights
IPSpLRU with reweighting
ADSpLRU with reweighting

NMSE

1000 1500

iterations
Fig. 2. Convergence curves of IPSpLRU and ADSpLRU for 1) updating
weighting coefficients, 2) fixed weighting coefficients, and 3) no weighting
coefficients.

0 500 2000

convergence analysis has been established. Nevertheless, it is
worth mentioning that, despite the fact that convergence is not
theoretically guaranteed, in all our experiments, both IPSpLRU
and ADSpLRU exhibited a very robust convergence behavior.

It is also noticed that ADSpLRU needs less iterations to con-
verge as compared with IPSpLRU, and it converges to a slightly
lower NMSE. This results from the inherent nature of the two
proposed algorithms, as previously explained. Interestingly, the
faster convergence rate of ADSpLRU with reweighting comes
at the price of its higher per-iteration computational complexity
as compared with that of IPSpLRU.

2) Window Size Selection and Runtime Comparison Between
IPSpLRU and ADSpLRU: In this experiment, we explore the
performance behavior of IPSpLRU and ADSpLRU as a func-
tion of the number of pixels K in the sliding window. Recall
that HSIs are, in general, of low spatial resolution; thus, spatial
correlation is mostly found in small regions of the images,
corresponding to a limited number of pixels. That said, the low-
rankness level (LRL) of the corresponding abundance matrix
(which we define as the ratio min(XK, N)/true rank of W)
usually decreases as the size K of the window increases.®
Keeping that in mind, we simulate abundance matrices setting
the number of the endmembers N to 50, while varying the
size of the window. To account for the decreasing LRL as size
K grows, the rank of the generated abundance matrices was
appropriately set for each K. Moreover, the sparsity level of
each matrix is set to 0.5. Spectral signatures are then produced

®In line with this, in this experiment, the true rank of W grows more rapidly
than min(K, N); hence, the ratio min(K, N)/true rank of W takes smaller
values, as K increases, also shown in Table III.
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TABLE II1
PERFORMANCE AND RUNTIME COMPARISON BETWEEN IPSpLRU AND ADSpLRU FOR
DIFFERENT NUMBERS OF PIXELS K OF THE SLIDING WINDOW AND LRLs

K=1LRL=1 K =9, LRL =4.5

K =25, LRL = 2.5

K =49, LRL =2.2 K =81, LRL = 2.04

Algorithm RMSE | runtime (sec) | RMSE | runtime (sec) | RMSE | runtime (sec) | RMSE | runtime (sec) | RMSE | runtime (sec)
IPSpLRU 0.0601 0.0602 0.0450 0.0673 0.0467 0.1034 0.0503 0.1814 0.0523 0.2037
ADSpLRU | 0.0519 0.1187 0.0368 0.1363 0.0384 0.1811 0.0423 0.2734 0.0432 0.3335

via the LMM with noise of SNR = 35 dB corrupting the data,
for 100 different realizations of the experiment. As shown in
Table III, the performance of both IPSpLRU and ADSpLRU is
optimized in terms of the RMSE for K = 9. This is so since,
for K =9, the generated abundance matrices are characterized
by the maximum LRL, which is efficiently exploited by both
the proposed algorithms.

As far as the accuracy of the estimated abundance matrices
is concerned, ADSpLRU outweighs IPSpLRU for all different
K’s. However, ADSpLRU demands more runtime compared
with IPSpLRU. This fact is in good agreement with the com-
putational complexity of the two proposed algorithms given
in Table I. Therein, it is shown that due to its novel incre-
mental approach, IPSpLRU’s computational complexity scales
with KN? + K3 while KN? + KLN arises correspondingly
for ADSpLRU. As a result, when the size of the selected win-
dow K is smaller than the number of the spectral bands L, as
well as the number of the endmembers N contained in the end-
member’s library (a hypothesis that shall hold to aptly ex-
ploit spatial correlation, as previously advocated), [IPSpLRU
offers a more computationally efficient solution compared with
ADSpLRU.

3) Toy Example: In this experiment, our goal is to highlight
the significance of the approach followed in this work, i.e., the
simultaneous incorporation of sparsity and low rankness on the
abundance estimation problem. To this end, we initially derive
the single prior counterparts of our algorithms. We first focus
on the low-rankness assumption; thus, the sparsity-imposing
norm is ignored (y = 0). IPSpLRU and ADSpLRU are then re-
duced to their modified versions, namely, IPLRU and ADLRU,
respectively. As implied by their names, the aforementioned
methods exclusively allow for the low-rank assumption. Sim-
ilarly, IPSpU and ADSpU are formed by solely accounting for
sparsity. That said, IPSpU and ADSpU emerge after dropping
the low-rank prior constraint (7 =0). Next, we generate an N x
K (where N = 50 and K = 9) simultaneously sparse and low-
rank abundance matrix W of rank 2 with a sparsity level of
20%, which is graphically illustrated in Fig. 3(a). Using this
W, we generate the L x K observation matrix Y via the
LMM in (1), where the noise matrix E is Gaussian i.i.d., and
SNR = 35 dB.

Fig. 3 shows the merits of the proposed IPSpLRU and
ADSpLRU algorithms. Specifically, it appears that the concur-
rent exploitation of sparsity and low rankness leads to signifi-
cantly more accurate abundance matrix estimates, as compared
with their single-constraint counterparts, namely, IPLRU, IP-
SpU and ADLRU, ADSpU, respectively. This is clearly seen in
terms of the RMSE, as well as from a careful visual inspection
of both the recovered abundance matrices and their residuals
with the true abundace matrix (i.e., W-W ), depicted in pair
in Fig. 3(b)—(m).

4) Key Role of the Parameters v, T: As previously explained,
parameters v and 7 control the imposition of sparsity and low
rankness, respectively, on abundance matrix W. Herein, we
unveil the dependence of the optimal (with respect to RMSE
minimization) set of these parameters on the inherent structure
of the sought abundance matrix. In this vein, five different
types of abundance matrices are generated, each reflecting a
specific combination of rank and sparsity level. Next, K =9
linearly mixed pixels are produced, corrupted with Gaussian
i.i.d. noise, and SNR = 35 dB. For each of the five experiments,
100 independent realizations are run, and the average RMSE is
demonstrated as a function of 7 and ~. As shown in Fig. 4,
in the first case [see Fig. 4(a) and (e)], which corresponds to
solely low-rank abundance matrices (without any presence of
sparsity), the sparsity-promoting parameter v does not affect
the estimation accuracy. In a similar manner, in the fourth
experiment [see Fig. 4(d) and (h)], where the abundance matrix
is considered of full rank and sparse, the low-rank-promoting
parameter has no impact on the estimation performance. No-
tably, in the other two cases (columns 2 and 3) where both
sparse and low-rank abundance matrices are considered, RMSE
is minimized for nonzero values of both 7 and . Such a result
is consistent with the fundamental premise of our algorithms,
which is the improvement in the abundance matrix estimation
by simultaneously exploiting sparsity and low rankness.

Moreover, the given results indicate that the optimal choice
of 7, depends on the particular structure (sparse and/or low-
rank) of the abundance matrix. Thus, proper selection of these
parameters shall involve fine-tuning schemes, which are com-
monplace when it comes to algorithms dealing with regularized
inverse problems.

5) Performance in the Presence of Noise: In this experiment,
we aim at exhibiting the performance of the proposed algo-
rithms in the presence of white and correlated noise corruption.
To this end, we stick with a specific simultaneously sparse
and low-rank abundance matrix W of sparsity level 20% and
rank-3. Based on this W, K =9 linearly mixed pixels are
generated, in the same way as previously described. Then,
depending on the case, white or colored Gaussian noise con-
taminates the data. Sixteen SNR values are considered ranging
from 10 to 40 dB, whereas 100 realizations are run for each
SNR value, and the mean of the RMSE and SRE metrics is
calculated.

* White Gaussian Noise: Fig. 5 shows the RMSE and
SRE curves obtained for the proposed IPSpLRU and
ADSpLRU and the three competing algorithms, namely,
CSUnSAL, MMV-ADMM, and BiICE. It is easily seen
that both IPSpLRU and ADSpLRU attain remarkably
better results comparing with CSUnSAL, MMV-ADMM,
and BilICE in all the examined SNR values. Additionally,
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Fig. 3. Proposed sparse and low-rank algorithms versus their sparse-only and low-rank-only counterparts. (a) W, Ground truth. (b) W, IPSpLRU. (c) residual,
IPSpLRU. (d) W, ADSpLRU. (e) residual, ADSpLRU. ()W, IPLRU. (g) residual, IPLRU. (h) W, ADLRU. (i) residual, ADLRU. (j)W, IPSpU. (k) residual,

IPSpU. (1) W, ADSpU. (m) residual, ADSpU.

we note that ADSpLRU performs slightly better as com-
pared with IPSpLRU, particularly for SNR values greater
than 32 dB. The price to be paid is that the computational

complexity per iteration of ADSpLRU is higher than that
of IPSpLRU. It is hence shown that sparse and low-rank
methods are robust to different levels of white noise. At
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Fig. 4. RMSE as a function of the low rankness and the sparsity regularization parameters 7 and -y, respectively. (a) Sparsity level = 100%, rank = 1, IPSpLRU.
(b) Sparsity level =10%, rank = 4, IPSpLRU. (c) Sparsity level = 20%, rank = 5, IPSpLRU. (d) Sparsity level = 10%, rank = 9, IPSpLRU. (e) Sparsity level =
100%, rank = 1, ADSpLRU. (f) Sparsity level =10%, rank = 4, ADSpLRU. (g) Sparsity level =20%, rank = 5, ADSpLRU. (h) Sparsity level =10%, rank =9,

ADSpLRU.

SRE vs SNR

SRE

10 | ——o—— ADSpLRU 1
——=—— IPSpLRU
————— CSunSal+
——————— MMV-ADMM
———— BIICE
10 15 20 25 30 35 40

Fig. 5. Performance in the presence of white noise (SRE and RMSE).

the same time, IPSpLRU and ADSpLRU outperform the
sparse-only CSUnSAL and BiICE algorithms as well as
the joint-sparse MM V-ADMM algorithm, provided that
both sparsity and low rankness characterize the abundance
matrix.

e Colored Gaussian Noise: In real HSIs, the noise that
corrupts the data is rather structured than white. Thus, to
assess the behavior of the proposed methods in such re-
alistic conditions, we simulate correlated Gaussian noise
that adds up to the linearly mixed pixels. Fig. 6 illustrates
the effectiveness of the tested algorithms in terms of
RMSE and SRE, for different SNR values. Therein as
well, we can see that IPSpLRU and ADSpLRU achieve
better results than their competing algorithms in the whole
range of the examined SNRs. Furthermore, ADSpLRU
performs better for high SNR values (> 32 dB), as com-
pared with IPSpLRU. As a result, the robustness of our
proposed methods is also corroborated in the presence of
correlated noise with different magnitude levels.

RMSE vs SNR
T

RMSE

10" ——e—— ADSpLRU
——=—— IPSpLRU
——— CSunSal+

————— MMV-ADMM

———— BIICE

10 15 20 25 30 35 40
SNR

6) Synthetic Image: This experiment highlights the effec-
tiveness of the proposed methods in estimating sparse, low-
rank, or both sparse and low-rank abundance matrices. Focused
on this purpose, we form a simulated HSI using the LMM (1)
and the same aforementioned endmembers’ dictionary ®. As
shown in Fig. 7(a), the simulated HSI consists of four rows,
each consisting of four 10 x 10 blocks of pixels. Each of the
“block rows” is generated by abundance matrices of a distinct
structure. To be more specific, the first row is generated by
joint-sparse W's, the second by solely low-rank W’s, whereas
rows 3 and 4 are produced by simultaneously sparse and low-
rank abundance matrices. The pixels in each block correspond
to abundance matrices of a particular combination of sparsity
level and rank. The detailed description of these structures is
depicted in the table of Fig. 7(b). The linearly mixed pixels
are corrupted by white Gaussian i.i.d. noise such that SNR =
30 dB. The table in Fig. 7(c) contains the obtained RMSE and
SRE for all algorithms tested. It is worth pointing out that our
introduced IPSpLRU and ADSpLRU algorithms outperform
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Fig. 6. Performance in the presence of colored noise (SRE and RMSE).
column
row 1st ond 3rd Ath
joint sparse - 15¢ (4,1) (8,2) (12,3) | (16,4)
low-rank - 274 (100,1) | (100,2) | (100,3) | (100,4)
sparse & low-rank - 37¢ || (4,2) (8,2) (12,2) | (16,2)
sparse & low-rank - 4" (4,3) (8,3) (12,3) | (16,3)
(b)
Algorithm 1t row 274 row 374 row 4 row
gort RMSE | SRE | RMSE | SRE | RMSE | SRE | RMSE | SRE
ADSpLRU 0.009 | 28.96 | 0.078 | 16.62 | 0.032 | 18.71 | 0.029 | 19.62
IPSpLRU 0.008 | 28.39 | 0.081 16.41 | 0.026 | 21.01 | 0.030 | 19.81
CSunSAL 0.026 | 19.81 | 0.117 | 12.39 | 0.052 | 13.88 | 0.047 | 14.99
MMV-ADMM 0.030 | 18.00 | 0.105 | 12.99 | 0.061 12.32 | 0.056 | 13.16
i . 21.71 | 0.26 6.72 0.04 17. 0.060 | 15.81
5 10 15 20 25 30 35 40 45 BICE 0.028 3 3 | 1783 8
() (©

Fig. 7. Structure of the synthetic image and results. (a) Synthetic image, 16 blocks of size 10 x 10 pixels each. (b) Structure of W in each block of the synthetic
image, each cell contains the pair: [sparsity-level%, rank(W)]. (c) RMSE and SRE (dB) results on synthetic image for each row.

(b)

Fig. 8. Salinas Valley image and endmembers’ dictionary. (a) Fifth PC
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of the Salinas Valley scene. (b) Rough ground truth information for a part of the Salinas

Valley scene under study. (c) Spectral signatures of the 37 endmembers, 17 of them manually selected from the scene as pure pixels and 20 (dashed curves)

randomly chosen from the USGS library [38].

their rivals, not only in “both sparse and low-rank” rows 3 and 4
but also in rows 1 and 2 that correspond to either sparse-only or

low-rank-only W’s.

C. Experiment on Real Data

This section illustrates the performance of the proposed
algorithms when applied on a real HSI. The hyperspectral scene

under examination is a portion of the widely used Salinas
vegetation scene acquired by the AVIRIS sensor over Salinas
Valley in California. This scene contains eight different vegeta-
tion species, namely, grapes, brocolli_A, brocolli_B, lettuce_a,
lettuce_b, lettuce_c, lettuce_d, and corn, as shown in Fig. 8(b).
Salinas HSI consists of L = 204 spectral bands (after excluding
20 noisy bands), and its spatial resolution is 3.7 m. Taking
the principal components (PCs) of the image, it can be seen
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Fig. 9. Abundance maps of Salinas HSI. (a) IPSpLRU. (b) ADSpLRU. (c) CSUnSAL. (d) MMV-ADMM. (e) BiICE.

that only the first six of them contain meaningful information.
Focusing on them, we can see that the first PCs give more rough
information on the formation of the vegetation, whereas less
significant PCs give more refined information on the vegetation
formation [39]. Fig. 8(a) shows the fifth PC of the scene under
study, where most of the vegetation is depicted. To make things

more interesting, the endmembers’ dictionary ® is composed
of 37 spectral signatures, 17 of them manually selected from
the scene, as in [40], and 20 randomly chosen from the USGS
library [38]. As depicted in Fig. 8(c), the 20 USGS endmembers
(blue dashed curves) significantly differ from the other 17 pure
pixel spectral signatures. This is so, since those signatures
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correspond to materials (minerals, organic and volatile com-
pounds, etc.) nonexisting in the region under study, whereas the
rest of the 17 endmembers correspond to the various vegetation
types existing in the scene. However, the USGS endmembers
were purposely included in the dictionary for investigating
the competence of the proposed algorithms in distinguishing
the present endmembers over the nonpresent endmembers, by
exploiting sparsity in the abundance matrices.

Fig. 9 shows abundance maps corresponding to the region of
interest, as obtained by the proposed IPSpLRU and ADSpLRU
and the three state-of-the-art competing algorithms, namely,
CSUnSAL, MMV-ADMM, and BiICE for v =1073, 7=
1074, A = 0.5, and 1 = 1072, Specifically, four different maps
are depicted for each algorithm, corresponding to four vege-
tation species, namely, grapes, brocolli_a, brocolli_b, and corn.
It is worth pointing out that since detailed ground truth informa-
tion is not available, the evaluation is done in qualitative terms.
From a careful visual inspection of the generated maps, we can
see that the abundances obtained by IPSpLRU and ADSpLRU
present patterns that are closer to those revealed by the first five
PCs of the HSI provided in [40]. This is particularly clear for the
maps corresponding to brocolli_a and brocolli_b. More specif-
ically, it is shown that the presence of these two species, which
is mainly located in two distinct regions, is better emphasized
by the proposed algorithms. Remarkably, the erroneous detec-
tion of these vegetation types is eliminated more effectively
by IPSpLRU and ADSpLRU, as also verified by comparing
Figs. 8(a) and 9. It should be also noted that both IPSpLRU and
ADSpLRU are proven competent in discerning the 20 USGS
(nonexisting in the scene) endmembers contained in the dictio-
nary, by efficiently exploiting their sparsity characteristic for
imposing zero values on the respective abundances. Hence,
it is corroborated that the exploitation of both sparsity and
the inherent spatial correlation existing in HSIs can lead to
qualitatively better results, thus verifying the significance of our
approach.

V. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we have presented a novel approach for per-
forming HSI unmixing, simultaneously exploiting sparsity and
spatial correlation. A novel cost function was first introduced
comprising a least squares proximity component regularized
by a linear combination of the weighted ¢;-norm and the
weighted nuclear norm of the latent abundance matrix. The
unmixing problem was thus treated as a sparse reduced-rank
regression problem. Two different algorithms were then devel-
oped for solving it, namely, an incremental-proximal-type al-
gorithm called IPSpLRU and an ADMM-based strategy called
ADSpLRU. Extensive simulations on both synthetic and real
data corroborate the effectiveness of the proposed approach
and algorithms, compared with other related state-of-the-art
unmixing schemes. The derivation of more computationally
efficient schemes alleviating the need for SVD is under current
investigation. Another relevant future research direction is the
exploitation of the specific structure or pattern of sparsity in
the abundance matrices implicitly imposed by the low-rankness
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property, which could further improve estimation performance.
This is also a topic of interest in the framework of a future work.
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