

Grant Agreement no. 640174 PHySIS

Sparse Signal Processing Technologies for HyperSpectral Imaging Systems

INSTRUMENT: Bottom-up space technologies at low TRL OBJECTIVE: COMPET-06-2014

D1.2 Risk Assessment Procedure

Due Date of Deliverable:

Completion Date of Deliverable:

Start date of project: 1st March 2015

Lead partner for deliverable: **FORTH**

	Project co-funded by the EC within the Horizon 2020 Programme				
	Dissemination Level				
PU	Public	\checkmark			
РР	Restricted to other programme participants (including the Commission Services)				
RE	Restricted to a group specified by the consortium (including Commission Services)				
СО	Confidential, only for members of the consortium (including Commission Services)				

PHySIS

PHYSIS_D1.2

31st May 2015

30th June 2015

Revision: Final

Duration: 24 months

Document History

Issue Date	Version	Changes Made / Reason for this Issue
20 June 2015	V0.1	Initial draft
30 June 2015	V02	Final version with all partner input included

Document Main Author(s): Grigorios Tsagkatakis (FORTH)

Document signed off by: Panagiotis Tsakalides (FORTH)

© Copyright 2015 PHySIS consortium.

This document has been produced within the scope of the PHySIS Project. The utilisation and release of this document is subject to the conditions of the contract within the Horizon 2020 Programme, grant agreement no. 640174.

PHySIS

Contents

1.	INTRODUCTION	4
1.1. 1.2. 1.3. 1.4. 1.5.	Scope Purpose Applicable documents Referenced documents Definitions, acronyms and abbreviations	
2.	RISK MANAGEMENT PROTOCOL	5
3.	RISK MANAGEMENT FOR PHYSIS	6
3.1. 3.2.	WP2: Application scenarios and system requirements WP3: Hyperspectral image acquisition	
3.3. 3.4.	WP4: Sparse representation and compression of hyperspectral data WP5: Sparsity-enforcing restoration and robust	
3.5. 3.6.	recovery WP6: Hyperspectral image understanding WP7: Integration, demonstration and validation	10
4.	DISCUSSION	13

1. Introduction

1.1. Scope

In deliverable D1.2 of WP1, we provide an outline of the key risks associated with each WP, the importance, and the impact of these risks on the success of PHySIS. Furthermore, we provide actions that should/will be taken in order to avoid these risks, as well as actions that will be taken in order to mitigate the impact of failures.

1.2. Purpose

The purpose of this deliverable is to act as a living document that will specify both known as well as unexpected risks that could endanger the success of PHySIS.

1.3. Applicable documents

[AD 01] PHySIS_Proposal-SEP-210155336

1.4. Referenced documents

[RD 01]Rose, Kenneth H. "A Guide to the Project Management Body of
Knowledge (PMBOK® Guide)—Fifth Edition." Project Management
Journal 44, no. 3 (2013): e1-e1.

1.5. Definitions, acronyms and abbreviations

- ESA: European Space Agency
- HSI: Hyperspectral Imaging
- HYP: Hyperspectral

PHySIS: Sparse Signal Processing Technologies for HyperSpectral Imaging Systems

SW: Software

2. Risk management protocol

The risk management protocol that we will follow in PHySIS is composed of the following stages:

- Risk Planning where the risk management procedures and responsibilities are identified. The Risk Management Planning continues throughout the lifetime of the project to ensure potential impacts on project risks related to changes in the project scope or focused as analyzed.
- Risk Identification Process is a proactive and iterative process where risks are resolved before they become problems. Risks will be assigned to the following cases i) internal risk contained within a single WP, ii) research where the risk and its impact on other WPs need to be further investigated, and iii) external referring to risks introduced from outside the project. This deliverable is part of the risk identification procedure.
- The Risk Response Process refers to the process of deciding on what should be done with a risk, if anything at all. The Risk Response Process must answer i) who is responsible for this risk and ii) what are the necessary actions that should be taken. The responsible partner will outline the course of actions that can include i) accept the risk as part of the solution, ii) mitigate by reducing the impact of the risk and iii) watch, in which case the consortium will closely monitor the risk and its impact.

Risk management will follow the flow of the consortium structure shown in Figure 1.

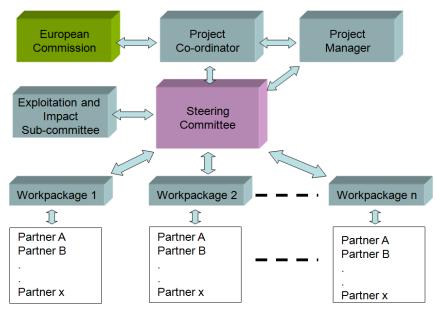


Figure 1: The overall management structure of the PHySIS project.

3. Risk management for PHySIS

3.1. WP2: Application scenarios and system requirements

The primary objectives of WP2 include the development of a detailed application scenario description that will include the corresponding system requirements and the evaluation of this scenario, with respect to technical and economic benefits, as well as the definition of a hyperspectral imaging system that will support the identified operational tasks. The critical risks associated with this WP include the failure to provide the required specifications for spaceborne applications, failure to evaluate the performance of the developed technologies with real data, and the failure to identify a terrestrial application of the developed technologies. We explore these issues in the following tables.

Risk	Partner		Importance	Prob. of failure	Impact
R2.1	FORTH		High	Medium	High
	Failure to define on-board capabilities of remote sensing devices with respect to complexity, memory, and bandwidth.				
Avoid	ance actions	We will collect and consider all available information regarding the hardware specifications of remote sensing devices.			
Mitiga	ition actions	We will consider scalable approaches with respect to the system's capabilities. We will also explore publicly available specifications of remote sensing systems.		-	

Risk	Partner	Importance	Prob. of failure	Impact
R2.2	FORTH/IMEC/PLANETEK	High	Medium	High

Failure to provide real	data for simulation and evaluation of the developed models.
Avoidance actions	We will collect and consider all available information regarding the hardware specifications of remote sensing devices.
Mitigation actions	We will evaluate the proposed technologies on publicly available data and in-house data from PLANETEK and IMEC.

Risk	Partner		Importance	Prob. of failure	Impact
R2.3	FORTH		Low	Medium	Low
Failure	e to identify appr	opriate terrest	rial applications.		
Avoid	considered in possible app		estrial applicat order to identify dications includ ulture, and food o	y the best fitting les applications	one. The list of
Mitiga	ition actions	rudimentary j technologies. limited datase	demonstration presentation of t The small scale et that will be ge ing a baseline for	he capabilities o demonstration enerated by the p	f the developed will consider a project and will

3.2. WP3: Hyperspectral image acquisition

The key objectives of WP3 are the design and evaluation of novel SSI architectures. To that end, information from WP2 will be considered as a baseline for traditional spectral imaging architectures and we will explore novel designs that leverage the capabilities of CS to achieve novel trade-off points.

Risk	Partner		Importance	Prob. of failure	Impact
R3.1	IMEC		High	Low	Medium
Failur	Failure to physically acquire the necessary data.				
Avoid	ance actions	IMEC will provide at least one prototypical design of a hyperspectral camera that will be utilized for collecting real data that will be considered as a scaled version of the ideal real data.			
Mitiga	ntion actions	simulated dat	llect real data of a second se	g the developed t	

Risk	Partner		Importance	Prob. of failure	Impact
R3.2	IMEC		High	Medium	Medium
-	Physical realization of CS based sampling scheme not possible using curr fabrication technologies.			using current	
Avoid	ance actions	We will consider the introduction of either owned or easil purchasable items that will be used for introducing th incoherent sampling that is required by CS. Furthermore, w will restrict our attention to sensors already developed an prototyped by IMEC.		ntroducing the urthermore, we	
Mitiga	ition actions		pact and effects	aluated on a th of the required c	

3.3. WP4: Sparse representation and compression of hyperspectral data

WP4 is responsible for the investigation and design of novel representation and compression schemes based on the concepts of Sparse Representations for application in HSI data.

Risk	Partner		Importance	Prob. of failure	Impact
R4.1	FORTH	FORTH		Medium	Low
	Failure to generate compression schemes that outperform state-of-the-art compression algorithms.				state-of-the-art
Avoid	ance actions	tions We will consider incremental enhancements of image compression standards like the CCSDS 122.			
		tigate standardiz rest of the WPs.	ed compression a	algorithms with	

3.4. WP5: Sparsity-enforcing restoration and robust recovery

WP5 will explore the potential of sparsity-enforcing models for the enhancement of low quality HYP imagery, as well as the introduction of sparsity models and dictionary learning for the recovery of CS-based sampling data in the presence of noise.

Risk	Partner		Importance	Prob. of failure	Impact
R5.1	CEA		Low	Low	Medium
Failure	Failure to develop appropriate hyperspectral representations.				
Avoid	Avoidance actions We will introduce new sparse representations f multispectral data based on learning techniques. The models will be deployed for solving robust signal recove			nniques. These	

	problems.
Mitigation actions	We will consider existing techniques for modelling high dimensional image data.

3.5. WP6: Hyperspectral image understanding

WP6 will explore the application of spectral unmixing and spectral clustering, as well as joint models for unmixing and clustering, of HYP data.

Risk	Partner		Importance	Prob. of failure	Impact
R6.1	NOA		Low	Medium	Low
Failur	Failure to accurately model endmembers for specific scenarios.				
and/or refer			ate-of-the-art en ence material s ries.		_
5		ate the capabili g algorithms on g		1 0	

Risk	Partner	Importance	Prob. of failure	Impact	
R6.2	NOA	Low	Medium	Low	
Hyperspectral images may not form dense in data regions which can be handled by possibilistic clustering algorithms.					

Avoidance actions	We will develop appropriate feature generation/selection schemes to represent data in dense in data regions.
Mitigation actions	We will evaluate the capabilities of the developed clustering algorithms on publicly available hyperspectral data.

Risk	Partner		Importance	Prob. of failure	Impact
R6.3	NOA		Low	Medium	Low
	Failure to cluster data resulting from the unmixing stage in a joint unmixing/clustering scheme.				
Avoid	Avoidance actions We will explore various clustering methods on the opprovided by the unmixing process.			s on the data	
U U U U U U U U U U U U U U U U U U U		We will treat unmixing and clustering separately and combine their results.			

3.6. WP7: Integration, demonstration and validation

WP7 will consider the integration of the individual modules developed in WP2-WP6 into a unified framework. This framework will be considered as a baseline for trade-off analysis compared to state-of-the-art architectures. The effort of this WP will be primarily focused on developing a SW suite that will provide a demonstration platform for the various functionality of individual modules.

Risk	Partner	Importance	Prob. of failure	Impact	
R7.1	PLANETEK	High	Low	Medium	
Failure to integrate the individual modules to an end-to-end system.					

Avoidance actions	The consortium will strive to develop clear interfaces between individual modules that will support their integration.		
Mitigation actions	We will evaluate the components individually and replace problematic components with similar state-of-the-art technologies.		

Risk	Partner		Importance	Prob. of failure	Impact
R7.2	PLANETEK		Medium	Low	Low
Failur	Failure to demonstrate a system that will meet the specified capabilities				
system desig		system design	pare and map the demonstration plan to the n and then maintain the plan updated according ediate results as soon as they are achieved.		
Mitigation actions		System will be designed in order to support the possibility to independently demonstrate different sub-sets of capabilities (where a full system end-to-end demonstration would be unfeasible/un-practical).			

4. Discussion

This living document encodes the current list of possible risks associated with the WPs and Tasks of PHySIS. The document will be constantly updated in order to support the timely monitoring of the developments and the work plan of the project.